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Abstract:
Recent efforts to standardize a deployment modeling language for cloud applications resulted in
TOSCA. At the same time, the software modeling standard UML supports architecture model-
ing from different viewpoints. Combining these standards from cloud computing and software
engineering would allow engineers to refine UML architectural models into TOSCA deployment
models that enable automatic provisioning of cloud applications. However, this refinement task
is currently carried out manually by recreating TOSCA models from UML models because a
conceptual mapping between the two languages as basis for an automated translation is missing.
In this paper, we exploit cloud modeling extensions to UML called CAML as the basis for our
approach Caml2Tosca, which aims at bridging UML and TOSCA. The validation of our approach
shows that UML models can directly be injected into a TOSCA-based provisioning process. As
current UML modeling tools lack cloud-based refinement support for deployment models, the added
value of Caml2Tosca is emphasized because it provides the glue between architecture modeling
and application provisioning.

1 INTRODUCTION

With the emergence of cloud computing, the
effort required for application provisioning has
considerably been reduced. Cloud services can
be acquired on demand [Leymann, 2011] via the
Web without the need to negotiate with the cloud
provider [Armbrust et al., 2010]. The low upfront
costs compared to a traditional on-premise envi-
ronment and the operational costs that scale with
the consumed cloud services are key incentives for
companies and engineers to deploy their applica-
tions on cloud environments. Several approaches
for application modeling and provisioning to the
cloud have been proposed [Bergmayr et al., 2014a].
Standardizing the representation of cloud-based
deployment models is addressed by TOSCA [OA-
SIS, 2013b]. A deployment model may capture
deployment artifacts and targets as a topology

and specify a plan how those artifacts must be
deployed on the targets by a provisioning engine.
At the same time, the software modeling stan-
dard UML supports architecture modeling from
different viewpoints, including the class, compo-
nent, and deployment viewpoint. Hence, it ap-
pears beneficial to combine standard modeling
languages from software engineering and cloud
computing [Jamshidi et al., 2013]. This would al-
low engineers to refine UML architectural models
into TOSCA deployment models that enable auto-
matic provisioning of cloud applications by means
of TOSCA-compliant containers. From an UML
perspective this is beneficial as it allows the appli-
cation provisioning for UML deployment models.
On the other hand, TOSCA deployment models
can be considered in the light of UML, thereby
gaining insights into the components manifested
by deployed artifacts and how they are realized



from a fine-grained structural or even behavioral
viewpoint. The deployment viewpoint is provided
by both languages, which favors its use in a map-
ping process.

However, an effective conceptual mapping be-
tween UML and TOSCA as the basis for an auto-
mated translation between the two languages is
still missing. As a result, the translation is cur-
rently carried out in a tedious manual step, which
is only achievable if engineers are familiar with
the peculiarities of both languages and capable
to identify the correspondences between them at
both levels intensional and extensional [Kühne,
2006]. While at the intensional level common as-
pects of cloud environments are captured in terms
of types, they are instantiated at the extensional
level by assigning concrete values to their features.
Moreover, due to the generic nature of UML’s
deployment language, it does not natively support
cloud-based deployment models, which hampers
the translation between the two languages.

In this paper, we propose a fully automatic
transformation approach Caml2Tosca which ad-
dresses both the intensional and extensional level
of deployment models. From a UML perspective,
we exploit cloud-specific extensions as a bridge
between the two languages. In previous work,
we presented the Cloud Application Modeling
Language (CAML) [Bergmayr et al., 2014c] as
a lightweight extension to UML’s deployment lan-
guage. It provides intensional abstractions over
cloud environments. This enables engineers to
create cloud-based deployment models directly in
UML and refine them towards a target cloud en-
vironment. The refinement task is required as a
basis for ultimately carrying out the application
provisioning, which is supported by TOSCA con-
tainers, such as OpenTOSCA [Binz et al., 2013].
Hence, CAML can serve as the bridge between
UML and TOSCA, where Caml2Tosca provides
the glue between architecture modeling and appli-
cation provisioning.

The remainder of this paper is structured as
follows. We discuss the background of our work
by introducing the metamodels of UML’s deploy-
ment language including the CAML extensions
and TOSCA in Section 2. In Section 3, we present
an overview of Caml2Tosca, introduce both
modeling levels intensional and extensional, and
discuss in detail the conceptual mapping between
UML and TOSCA. In Section 4, we validate our
approach by presenting a prototypical implementa-
tion of the Caml2Tosca transformer and demon-
strating it in a practical setting. The evaluation

presented in Section 5 shows the practical value of
our approach for engineers as current UML mod-
eling tools are capable to adopt CAML. Finally,
in Section 6, we discuss related work before we
conclude in Section 7.

2 BACKGROUND

To establish the basis for our work, we intro-
duce UML’s deployment modeling concepts and
the cloud-specific extensions to them we have de-
veloped in previous work [Bergmayr et al., 2014c].
Thereafter, we give an overview on TOSCA’s mod-
eling concepts most relevant for our work.

2.1 Cloud extensions to UML

CAML aims at enabling engineers to create de-
ployment models by common cloud modeling con-
cepts and to refine them towards a target cloud
environment. Those concepts are captured by
CAML’s cloud library, whereas UML profiles are
employed to support the refinement step. Figure 1
gives an overview of UML’s metamodel where the
emphasis is placed on the deployment viewpoint.
The cloud-specific concepts provided by CAML’s
cloud library are instances of the generic deploy-
ment modeling concepts standardized by UML.
They in turn are extended by environment-specific
modeling concepts that embody concrete cloud
services, e. g., an M1Medium compute service of
the Amazon AWS environment1. CAML provides
UML profiles dedicated to cloud environments.
They are integrated into a common cloud profile
which currently supports stereotypes for Amazon
AWS/OpenStack, Google cloud platform2, and
Microsoft Azure3.

Even though the use of profiles for concrete
cloud environments in addition to a cloud library
increases the complexity of CAML from a lan-
guage engineering perspective. However, from
an engineer’s perspective, it allows them to re-
fine deployment models towards a cloud environ-
ment [Ardagna et al., 2012] without direct modi-
fications to the base elements as stereotypes are
only associated to them. Moreover, this flexible
typing mechanism shows its benefit when changing
the refinement, e.g., from an M1Medium compute
service to an M1Large one. It requires only to

1Amazon AWS: https://aws.amazon.com
2https://cloud.google.com
3https://azure.microsoft.com
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Figure 1: UML deployment concepts and CAML extensions (excerpt).

un-apply and re-apply the stereotypes.
Turning the focus on the cloud library, it is

built around the concept of cloud service, which is
considered as a virtual resource that is expected to
be provided and managed by a cloud environment.
Specializations of the cloud service concept cap-
ture common cloud environment capabilities such
as computational capacity and data management.
The former is embodied by the compute service
concept. The elastic nature of a cloud environment
is managed by dedicated scalability strategies. For
instance, compute services can be automatically
provisioned and released within a certain bound-
ary specified by the CAMLMultiplicity (see cloud
profile). A storage service refers to the data man-
agement capabilities of cloud environments. It
captures diverse solutions for structuring applica-
tion data [Fehling et al., 2014] and increasing their
availability by relaxing consistency [Vogels, 2009].
To represent relationships between cloud services,
communication channels are employed. They can
also be stereotyped, e. g., to express different forms
of communication via specific protocols.

Figure 2 shows how the cloud library and the
cloud profile dedicated to Amazon AWS can be
applied by means of a simple deployment model.

It consists of an automatically scaled compute
service that is connected to a key-value storage
service for managing data in an eventually consis-
tent way. Both cloud services are refined towards
Amazon’s cloud environment. The refinement
is accomplished by applying stereotypes of the
respective UML profile. The modeled compute
service refers to Amazon’s “M1Medium” service
offering, whereas “DynamoDB” is used for the
required cloud storage capabilities.

«M1Medium» 
:ComputeService 

dataStructure=KeyValue 
consistency=Eventual 

:StorageService 

scaling:Auto 

region=EU 
«M1Medium» 

«DynamoDB» 

:ComputeService 

dataStructure=Relational 
consistency=Strict 

:StorageService 

scaling:Auto 

Refinement 

Deployment model 

Cloud 
Library 

Amazon 
Profile 

«import» «apply» 

Figure 2: Example deployment model and its refine-
ment towards the Amazon cloud environment.
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Figure 3: TOSCA metamodel (XML-based language [OASIS, 2013b]).

2.2 TOSCA metamodel

The main concepts of the TOSCA metamodel
relevant for our work are depicted in Figure 3.
We simplified some constructs, where possible,
for the sake of comprehension. For more details,
we refer interested readers to the TOSCA speci-
fication [OASIS, 2013b] and the primer [OASIS,
2013a]. A compact overview of TOSCA is given
by Binz et al. [Binz et al., 2014]. TOSCA consists
conceptually of two parts. The topology template
is used to describe the structure of cloud appli-
cations, whereas a deployment plan is basically a
workflow model that can be invoked to execute
certain tasks, e. g., the provisioning of a compute
service instance.

Considering the topology template in more de-
tail, it is a directed graph that consists of node
templates and relationship templates. The former
represents artifacts related to cloud applications
and environments, while the latter defines depen-
dencies between those artifacts, e. g., a PHP-based
web application is hosted on a web server which in
turn is hosted on a compute service. Both kinds of
templates are typed. The type of a node template
is defined by a node type, similarly is a relation-
ship type used to define the type of a relationship
template. The respective types can be used to
specify a properties definition and management
interfaces including operations with input and
output parameters. For example, a compute ser-
vice type may define a property “public address”
and the operations “start” and “shut down”. A
template of this type enables the configuration

of the public address that is used to access the
compute service instance and provides the defined
operations to start the compute service instance
and shut it down. Generally, types can inherit
from each other, which fosters its reuse: com-
pute service types specific to a cloud environment,
e. g., Amazon EC2 compute services, may inherit
from a generic compute service type that provides
common properties and operations. An imple-
mentation artifact is used to provide a concrete
implementation for an operation. In theory, any
programming language can be used to implement
an operation. From a technical perspective, a
TOSCA runtime container must be capable to
invoke the implementation of an operation.

Finally, a DeploymentArtifact refers to a con-
crete implementation of a node template. For
example, a PHP-based web application is consid-
ered as a deployment artifact. Also, binaries of
web server are deployment artifacts. They are
required to actually install it.

3 CAML2TOSCA

Bridging the gap between UML and TOSCA
leverages not only continuous modeling support
for cloud applications but also allows engineers
to carry out the application provisioning. In this
respect, the target of the application provisioning
is a cloud environment. UML provides capabilities
to model application architectures from different
viewpoints. On the other hand, TOSCA enables
the provisioning, management, and termination of



cloud services and applications. In the following,
we give first a high-level overview of the under-
lying approach to combine UML and TOSCA.
Thereafter, we clarify how the intensional and ex-
tensional modeling levels introduced by UML and
TOSCA relate to each other as this is essential
for providing a useful mapping between them. Fi-
nally, we propose an effective conceptual mapping
between UML and TOSCA where CAML takes
the role of capturing cloud-specific features from
the perspective of UML.

3.1 Overview

Considering the high-level overview presented in
Figure 4, the entry point to the Caml2Tosca
approach is a deployment model capturing the
desired state of the cloud application provisioning.
Creating the deployment model is considered as
part of architecture modeling which usually in-
cludes to produce a variety of models (or views on
models), each of which addressing a concern from a
certain viewpoint. In particular, CAML deals with
the class, component, and deployment viewpoint.
A deployment model refined towards a target
cloud environment is considered as input to a tool
chain capable to produce a standard-compliant
executable cloud service archive (CSAR). We col-
lectively refer to the set of tools comprised by
this chain as TOSCA tools. They allow engineers
to automatically generate a TOSCA-based rep-
resentation consisting of type definitions and the
topology template that corresponds to the injected
UML deployment model refined by CAML. Based
on those type definitions, the implementations of
management operations required for the applica-
tion provisioning are automatically injected [Kopp
et al., 2013]. To enable their execution in an
appropriate order, a management plan is orches-
trated [Breitenbücher et al., 2014a]. All the pro-
duced artifacts by the TOSCA tools constitute the
CSAR. It can be executed by TOSCA-compliant
runtime containers. The presented conceptual
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Figure 4: Overview of the Caml2Tosca approach.

mapping between UML and TOSCA provides the
basis for automating the generation of a typed
TOSCA topology template from a CAML-based
deployment model.

3.2 Modeling levels

Clarifying how the intensional and extensional
level introduced by UML and TOSCA relate to
each other is essential for realizing a conceptual
mapping between them. Figure 5 depicts the core
concepts of UML and TOSCA to create inten-
sional and extensional deployment models. While
in UML the various sub-meta-classes of classifier
are employed to model application architectures
from an intensional perspective, the correspond-
ing meta-class in TOSCA is type. For instance,
the compute service with the region property is
considered as a concrete UML classifier or TOSCA
type, respectively. At the extensional level, the
meta-classes instance specification of UML and
template of TOSCA correspond to each other.
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Figure 5: Comparison of TOSCA’s and UML’s inten-
sional level and extensional level.

Indeed, the stereotype applied to an instance
specification needs to be taken into consideration
to infer the corresponding type of a produced tem-
plate because TOSCA does not directly support
stereotypes. Still, a stereotype can be considered
as a type in TOSCA, which inherits the prop-
erties of the base class extended by the stereo-
type. For instance, the extension between the
“M1Medium” stereotype and the compute service
is represented as a generalization between the
corresponding TOSCA types. This solution im-
plies that a stereotyped artifact of an extensional
deployment model needs to be translated into a
TOSCA template that is typed by the type of
the corresponding stereotype instead of its direct
classifier. As a result, the stereotyped compute



service instance at the extensional level is repre-
sented as a TOSCA template of type “M1Medium”
instead of compute service.

Generally, elements modeled at the extensional
level are employed to designate elements of a (soft-
ware) system in the form of a one-to-one mapping
concerning their individual features [Kühne, 2006].
Considering the instance of the “M1Medium” com-
pute service, it designates Amazon’s M1 medium
compute service located in the EU. Obviously, in
the context of deployment modeling, several com-
pute services may be comprised by a running cloud
application, which requires a multiplicity concept
not only for elements of intensional models but
also for extensional models. Regarding the for-
mer, a one-to-many or many-to-many multiplicity
is typically supported by default, i. e., it is not
explicitly defined by engineers but integral part
of a metamodel. Multiplicities for elements at
the extensional level determine the lower-bounds
and upper-bounds of real-world entities that are
considered as instances of these elements. This is
useful for cloud applications where cloud services
are provisioned and released on-demand. Clearly,
to specify more sophisticated custom rules that
trigger the provisioning of new cloud services or
force to release them, dedicated language support
seems to be required (cf. e. g., [Kritikos et al.,
2014]).

3.3 Conceptual Mapping

The proposed conceptual mapping is generic in
the sense that any UML deployment model can
be translated into a corresponding TOSCA model.
As CAML provides standard compliant extensions
to UML in terms of custom types, they can be con-
sidered as supplementaries to UML’s metamodel.
In this way, they can be treated in the mapping
process similar to UML standard meta-classes.

Generally, concrete classifiers of CAML can be
represented as node types in TOSCA and their
use at the extensional level can be represented
in terms of node templates. A specific case are
stereotypes which require special treatment for in-
ferring the type information assigned to produced
node templates.

Moreover, standard relationships of UML typi-
cally applied for deployment modeling, i. e., deploy-
ment and dependency are also addressed. They
are usually applied directly at the extensional
level. As a result, they are represented as in-
stances of the corresponding meta-classes at the
extensional level instead of an instance specifica-

tion. Both relationship types can certainly be
stereotyped if additional features are required or
certain vocabularies with specific semantics need
to be introduced.

3.3.1 Intensional level

The mapping presented in Table 1 acts as the basis
to generate TOSCA type definitions. In fact, node
types can be generated from concrete classifers
that constitute CAML’s cloud library and profiles.
Basically, the signature of a classifier including its
name and whether it is abstract or concrete can
straightforwardly be mapped to a node type. A
property of a classifier can be mapped to a prop-
erties definition of the corresponding node type.
Similarly, an operation including its input and
output parameters can be mapped to an operation
of a node type and added to the exposed manage-
ment interface.

Regarding stereotypes, we need to distinguish
whether they extend a base class or inherit from
another stereotype. In the former case, the gener-
ated node type specializes the corresponding node
type of the stereotype’s base class, whereas in the
latter case, it inherits from the node type of the
super stereotype.

Finally, an association can be mapped to a
relationship type where the first memberEnd of
the association corresponds to the validSource and
the second to the validTarget.

Table 1: Mapping for intensional level.
UML/CAML TOSCA 

   uml:Model m add Definitions d 
   uml:Classifier c   add NodeType nt if c.oclIsTypeOf(uml:Class) 
      nt.name = c.name 
      nt.abstract = c.isAbstract 

  

    nt.derivedFrom = -- obtain CAML base element if(c.oclIsTypeOf 
                                             (Stereotype) and c.extension.oclIsDefined()) 
                                             else c.general 

      add PropertiesDefinition pd if c.attribute.notEmpty() 
      add Interface i if c.ownedOperation.notEmpty() 
   uml:Property p     for each uml:Property p in c.attribute  
          pd.element = -- create element definition from p.name 
          pd.type = -- create element type from p.type 
   uml:Operation uo     add Operation o for each uml:Operation uo  
                 in c.ownedOperation 
          o.name = uo.name 
          add Parameter p for each uml:Parameter up in uo.ownedParamer 
            p.name = up.name 
            p.type = up.type 
          o.inputParameters = uo.ownedParameter where p.direction = in 
          o.outputParameters = uo.ownedParameter where p.direction = out 
        nt.interfaces.operations = o 
   uml:Association a   add NodeRelationship nr 
      nr.name = a.name 
      nr.validSource = a.memberEnd.at(1) 
      nr.validTarget = a.memberEnd.at(2) 



3.3.2 Extensional level

The mapping presented in Table 2 provides the
basis to generate a TOSCA topology template from
a UML deployment model refined towards a cloud
environment. Thus, the emphasis is now placed on
instance specifications and the generation of cor-
responding node templates and relationship tem-
plates from them. If a stereotype is applied to
an instance specification the inferred type refers
to the node type of the stereotype instead of the
type assigned to the instance specification. In-
deed, we need to consider the properties of both
the type assigned and the stereotype applied to
the instance specification. If the assigned type
refers to an artifact, a TOSCA deployment arti-
fact must be created additionally. It describes the
type of an artifact that is actually deployed, e.g.,
a web application implemented in PHP.

The deployment relationship in UML is directly
mapped to the predefined TOSCA relationship
template ttl4:hosted on. Even though there is
also a predefined TOSCA relationship template
ttl:depends on that fits well to the dependency
relationship in UML, we need to consider the fact
that a dependency may be stereotyped to special-
ize its semantics. As a result, a possibly applied
stereotype determines on the type of the produced
relationship template.

4 VALIDATION

To validate the practical feasibility of our ap-
proach, we implemented the Caml2Tosca trans-
former on top of Eclipse5 and integrated it into
the open-source ecosystem OpenTOSCA, which
supports modeling, provisioning, and managing
of TOSCA-based cloud applications. In the fol-
lowing, we present the tool chain leveraging ar-
chitecture modeling and application provisioning
based on UML and TOSCA. Thereafter, we in-
troduce a detailed application scenario to validate
our approach in a real-life scenario.

4.1 Prototypical Implementation

We implemented a Java-based open-source
prototype of the Caml2Tosca transformer6. It

4ttl: Tosca type library
5Eclipse: http://www.eclipse.org
6The open-source prototype is vailable at:

https://github.com/alexander-bergmayr/caml2tosca

Table 2: Mapping for extensional level.

UML/CAML TOSCA 
   uml:Model m add Definitions d 
    add ServiceTemplate st 
      st.name = m.name 
      add TopologyTemplate tt 
   uml:InstanceSpecification is 

  switch(is.classifier.oclType())     
      case : uml:Classifier c using 

    rst = cs.getAppliedSubstereotype 
              (cpp:CAMLElement) 
    mst = cs.getAppliedStereotype 
                (cpp:CAMLMultiplicity) 

      add NodeTemplate nt 
          nt.name = is.name 

  
        nt.type = is.classifier if rst.oclIsUndefined() 
                         else rst.name  

          nt.minInstances = is.getValue(mst, 'lower') 
          nt.maxInstances = is.getValue(mst, 'upper') 
          add Properties 

  
          add Element e, Value v for each uml:Slot sl 
                   in is.slots 

              e = sl.definingFeature.name 
              v = sl.getValues() 

  
          add Element e, Value v for each uml:Property p 
                   in rst.attribute 

              e = p.name 
              v = is.getValue(rst, p.name) 
          add DeploymentArtifact da if(c = uml:Artifact) 
            da.name = c.name  
            da.artifactType = -- obtain it from c.filename 
      case uml:Association a 

    using 
    rst = cc.getAppliedSubstereotype 
            (ccp:CAMLElement) 

      add RelationshipTemplate rt      
        rt.name = is.name   

          rt.type = is.classifier if rst.oclIsUndefined() 
                           else rst.name  
          add Properties 

  
          add Element e, Value v for each uml:Property p 
                   in rst.attribute 

                  e = p.name 
                  v = is.getValue(rst, p.name) 
   uml:Deployment d       add RelationshipTemplate rt  
          name = "HostedOn" 
          type = ttl:HostedOn 
          sourceElement = d.source 
          targetElement = d.target 
   uml:Dependency d 

    using 
    rst = cc.getAppliedSubstereotype 
              (ccp:CAMLElement) 

      add RelationshipTemplate rt 
          name = "DependsOn" if rst.oclIsUndefined() 
                        else rst.name 
          type = ttl:DependsOn if rst.oclIsUndefined() 
                      else rst.name 
          add Properties 

  
          add Element e, Value v for each uml:Property p 
                   in rst.attribute 

                  e = p.name 
                  v = is.getValue(rst, p.name) 
          sourceElement = d.source 
          targetElement = s.target 

is grounded in the presented conceptual mapping
between UML and TOSCA (see Section 3.3).
From a technical perspective, the Caml2Tosca
model transformer comes as an Eclipse plug-in
where the conceptual mapping between UML and
TOSCA is implemented by means of the proven
model transformation language ATL7 [Jouault
et al., 2008]. To employ ATL, the source
and target metamodels must be available in a
compatible format. Metamodels represented
by EMF’s8 Ecore are directly supported by
ATL. However, language definitions expressed
in terms of an XML Schema are not compatible
with it. For that purpose, we automatically

7ATL: https://eclipse.org/atl
8Ecore: https://eclipse.org/modeling/emf



reverse-engineered an Ecore-based representation
from the XML-based metamodel of the TOSCA
standard [Neubauer et al., 2015]. To produce an
XML-based representation of the TOSCA models
generated by the Caml2Tosca transformer, the
standard serialization mechanisms provided by
EMF are exploited. EMF provides dedicated
model converters to translate between the serial-
ization formats used by Ecore and XML Schema.
We integrated the Caml2Tosca transformer
into OpenTOSCA9 as shown in Figure 6. The
resulting system involves two kinds of users: (i)
Application engineers model their applications in
UML, which are then automatically provisioned
to be used by (ii) business users. To create the
high-level architecture of a cloud application
including its desired deployment on a cloud
environment, engineers can employ the Papyrus
Eclipse UML10 modeling tool for which CAML
plug-ins are available. In a first step, the
deployment model is refined towards the selected
target cloud environment by applying the CAML
cloud profile, see 1 . This ensures that a properly
typed TOSCA-based representation can be
generated from a deployment model created in
UML and refined by CAML. To support the
application provisioning, the CAML deployment
model is translated into a corresponding TOSCA
topology topology, see 2 . As the generated
TOSCA representation describes only the desired
deployment topology, executable artifacts for
the actual application provisioning are required,
e. g., a script to install a web server on a virtual
machine or to configure a web application.
Those artifacts are automatically injected into
the TOSCA topology by Winery [Kopp et al.,
2013], which is part of OpenTOSCA to model
TOSCA-based cloud applications. Winery injects
implementations of all management operations
required for the provisioning by looking up
the corresponding node types and relationship
types in a local repository and embedding the
required artifacts and type definitions into
the TOSCA topology, see 3 . To execute the
required operations, a BPEL-based deployment
plan is automatically generated [Breitenbücher
et al., 2014a]. It orchestrates the operation
implementations in an appropriate order, see
4 . The generated deployment plan, topology
template, and all required artifacts and type
definitions are packaged as portable CSAR. The
OpenTOSCA container consumes the CSAR for

9OpenTOSCA: https://github.com/OpenTOSCA
10Papyrus: https://eclipse.org/papyrus
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Figure 6: Tool chain for application modeling and
provisioning to the cloud.

installing it. The CSAR enables the container
to provision the modeled application. In fact,
the generated deployment plan is executed on a
local workflow engine, see 5 . As TOSCA allows
implementations of management operations using
arbitrary technologies, operation implementations
that are not executed in the application’s target
cloud environment, e. g., local services that wrap
cloud environment APIs, are deployed on a local
IA runtime (Implementation artifact runtime)
and bound to the deployment plan [Wettinger
et al., 2014b, Wettinger et al., 2014a]. Finally,
business users can trigger the provisioning of cloud
applications via the Vinothek [Breitenbücher
et al., 2014b], which is a self service portal that
offers those applications.

4.2 CAML2TOSCA by Example

To demonstrate our approach, we refer to the Moo-
dle learning platform11, which is a LAMP-based
application. The CAML deployment model of
Moodle is shown in Figure 7. It represents the
application structure together with an excerpt of
domain classes, the manifestation of these com-
ponents by deployable artifacts, and a possible
deployment of these artifacts on OpenStack. The
depicted extensional deployment model contains
two components, MoodleWebApp and MoodleDB.
They are connected to a LAMP-based application
stack on top of two compute services: the first com-
pute service hosts the business tier while the data
tier is hosted on the second one. Moreover, the
two compute services are refined towards Open-

11https://moodle.org



Stack. The stereotypes are covered by CAML’s
cloud profile, where the base elements to which
they can be applied are captured by the cloud
library of CAML. It also covers a set of base types
to specify application stacks for cloud deployment
models.

The CAML deployment model is translated
into a functionally equivalent TOSCA topology
template by the Caml2Tosca transformer. This
topology is enriched by Winery and packaged into
a CSAR, which can be consumed by the Open-
TOSCA container. An excerpt of the CSAR is
depicted in Figure 8. It shows the definition of
the “Apache Web Server” type assigned to a tem-
plate. Properties of the “Apache Web Server”

«deploy» 

OpenStack-based Deployment «Profile» 
CloudProfile 

* 

MoodleWeb MoodleDomain 

Course 
-  id:int 

Module 
-  id:int 

«component» «component» 

«class» «class» 

MoodleWebApp 
«artifact» 

«manifestation» «manifestation» 

«use» 

Moodle Components 

* 

MoodleDB 
«artifact» 

:WebServer 
«ApacheHttp» 

:MoodleWebApp 

«deploy» 

«deploy» 

:ComputeService 

«M1Medium» 
region=EU 

«deploy» 

«M1Medium» 

scaling=Auto 

:OperatingSystem 
«LinuxOS» 

:DBServer 
«MySql» 

«deploy» 

:MoodleDB 

«deploy» 

:ServerModule 
«PHP» 

«deploy» 

«import» 

«ModelLibrary» 
CloudLibrary 

«apply» 

«import» 

«ModelLibrary» 
TypesLibrary 

«import» 

«Profile» 
TypesProfile 

«apply» 
:ComputeService 

«M1Medium» 
region=EU 

«M1Medium» 

scaling=Auto 

:OperatingSystem 
«LinuxOS» 

Figure 7: CAML deployment model for Moodle on
OpenStack.

CSAR 

Types 
<xs:complexType name="tApacheWSProperties"> 
  <xs:element default="80" name="httpdport" type="xs:int"/> 
</xs:complexType> 
<xs:element name="ApacheWSProperties" type="tApacheWSProperties"/> 

Definitions 
<NodeTemplate name="Apache Web Server" type="ns2:ApacheWebServer"> 
  <Properties> 
    <ns2:ApacheWSProperties xmlns:ns2="..." xmlns="…"> 
      <httpdport>80</httpdport> 
    </ns2:ApacheWSProperties> 
  </Properties> 
</NodeTemplate> 
<NodeType name="ApacheWebServer"> 
  <DerivedFrom typeRef="ns1:WebServer"/> 
  <PropertiesDefinition element="tns:ApacheWSProperties"/> 
    <Interfaces> 
      <Interface name="http://docs.oasis-open.org/tosca/ns/interfaces/lifecycle"> 
        <Operation name="install"/> 
        <Operation name="deploy"/> 
      </Interface> 
    </Interfaces> 
</NodeType>  

Figure 8: CSAR for Moodle on OpenStack.

type are captured by an XML schema to sup-
port their validation when they are used. To
automatically provision the Moodle application,
the used node types and relationship types must
be available in the model repository of Winery
for injecting the required provisioning logic. We
achieved this by semantically aligning CAML’s
cloud profile with the respective TOSCA types.
The CAML deployment model can thus be trans-
formed into a corresponding TOSCA representa-
tion without changing its overall semantics. As
a result, CAML deployment models can directly
be injected into a TOSCA-based provisioning pro-
cess. In addition, behavioral aspects, i. e., the
implementations of operations required for the
provisioning can be embedded seamlessly with-
out additional manual effort when creating the
CAML deployment model. However, very specific
stereotypes or TOSCA types, respectively, may
require further manual adaptation of the produced
TOSCA topology or deployment plan. For exam-
ple, a special script may need to be added to the
TOSCA topology in order to automatically estab-
lish a connection between two custom business
components.

5 EVALUATION

Today, several modeling tools support UML.
The aim of this study is to investigate on their
methods for deployment modeling in general and
support for cloud-based deployment targets in
particular. We created the deployment model of
Figure 7 in each of the selected tools with the aim
to answer the research question as follows.
RQ: What are the methods of current UML mod-
eling tools to represent cloud-based deployment
models and what are the practical implications?
Our comparison criteria mainly address (i) the
levels at which deployment models are represented,
(ii) the support for multiplicities not only at type
level but also at instance level, and (iii) the offered
possibilities to refine environment-independent de-
ployment models towards a selected cloud environ-
ment. Regarding the second criterion, the support
for multiplicities at the instance level is not di-
rectly supported by the UML standard. However,
defining them for modeled application artifacts
and cloud services appears to be of particular im-
portance. The multiplicities determine the lower
bounds of running application artifacts and cloud
services as well as their upper bounds since in a
highly scalable cloud environment [Vaquero et al.,



2011] they are provisioned as their demand in-
creases but also released once their demand de-
creases.

Comparison criteria. As deployment mod-
els are specified by exploiting the intensional and
extensional level, the first criterion refers exactly
to the capability of UML modeling tools to sup-
port both levels. The second criterion is dedicated
to the support of multiplicities at the extensional
level because this seems of particular interest for
modeling cloud applications. Finally, to investi-
gate the need of UML libraries and UML profiles
covering cloud-specific domain concepts, the third
criterion addresses the support of current UML
modeling tools for refining deployment models to-
wards a target cloud environment.
−CC1 : Is deployment modeling supported at both
levels intensional and extensional?
−CC2 : Is the definition of multiplicities sup-
ported for elements at the extensional level?
−CC3 : Is the refinement of deployment models
towards a cloud environment supported?

Selected tools. The selected set of commer-
cial and open-source UML modeling tools that
claim to support deployment modeling are sum-
marized in Table 3.

Evaluation procedure. First, we first im-
ported the deployment model of Figure 7 includ-
ing the required cloud library and profile into
the modeling tools. Thereafter, we evaluated the
capabilities of the modeling tools offered in the
standard settings and explored the different wiz-
ard configurations if supported.

Results. The results of our study are summa-
rized in Table 3. All evaluated UML modeling
tools support both the intensional and extensional
level to create deployment models. Support for
the extensional level slightly differs between the
tools because some of them offer to directly cre-
ate instances of deployment artifacts, where the
respective instance specification assigned with a
classifier is generated automatically, i.e., without
additional user interaction. Regarding multiplici-
ties at the extensional level, only Enterprise Archi-
tect supports them by default. Most of the tools
lack cloud-based refinement support for UML de-
ployment models. Only Rational Software Ar-
chitect introduces a cloud node concept which
is resembled by CAML’s compute service. This
emphasizes the value of CAML not only to lever-
age the refinement of deployment models towards
a cloud environment but also as a bridge from
UML to TOSCA. Finally, even though this eval-
uation focuses on UML, it is worth noting that

Table 3: Comparison results
UML   

    Deployment Multiplicities 
Cloud 

Support Modeling Tool Intensional 
level 

Extensional 
level 

Intensional 
level 

Extensional 
level Name Version 

  
 Altova UML 2015 supported supported via 

Object Diagram  supported not 
supported 

no 
support 

  
 ArgoUML 0.34 supported directly 

supported supported not 
supported 

no 
support 

  
 Enterprise Architect 9.3 supported supported via 

Object Diagram  supported supported SOMF- 
based 

  
 Magic Draw 18.0 supported directly 

supported supported not 
supported 

no 
support 

  
 Rational Software 
 Architect 8.5.1 supported directly 

supported supported not 
supported 

partial 
support 

  
 Papyrus 1.0.0 supported supported via 

Object Diagram  supported not 
supported 

no 
support 

  
 Visual Paradigm 12.1 supported supported via 

Object Diagram  supported not 
supported 

no  
support 

  

Enterprise Architect supports describing and ana-
lyzing cloud environment topologies as part of the
service-oriented modeling framework (SOMF)12.

6 RELATED WORK

Several approaches introduce a considerable
set of cloud modeling concepts and propose tool
support to automate the application provision-
ing. The Blueprint [Nguyen et al., 2011] ap-
proach describes service-based applications by
coarse-grained deployment artifacts that are con-
nected with concrete cloud services. Describing
such cloud services in an XML-based language is
supported by CloudML-UFPE [Gonçalves et al.,
2011]. Similarly, Zephyrus [Cosmo et al., 2014]
allows specifying service types associated with con-
straints, e.g., the maximum number of replicas
of an application component, that are attempted
to be satisfied when an extensional deployment
model is derived from an initial set of types. De-
pendencies between them are expressed via ports
through which the derivation of possible deploy-
ment configurations can be automated. The no-
tion of ports is also exploited by CloudML [Ferry
et al., 2013] to specify cloud-oriented deployments.
Both Zephyrus and CloudML come with dedicated
tools to automate the software provisioning based
on specified deployment models, which is also
supported by the approach of Holmes [Holmes,
2014] and StratusML [Hamdaqa and Tahvildari,
2015]. Creating deployment models is addressed
by CloudMIG [Frey and Hasselbring, 2011] where
the main focus is on migration scenarios to the
cloud. Migrating existing applications to the
cloud is also addressed by MOCCA [Leymann

12SOMF: http://www.sparxsystems.com/somf



et al., 2011]. It allows the representation of the
architecture and deployment of existing applica-
tions. Moreover, it is capable to derive an opti-
mal clustering of architectural elements and con-
crete implementation units that are assigned to
virtual resources of a cloud environment. They
are described in the Open Virtualization For-
mat [DMTF, 2013] (OVF) to provide support for
the actual resource provisioning. OVF is extended
by RESERVOIR-ML [Chapman et al., 2012] with
primitives to describe applications in terms of
components and elasticity rules that control the
virtual machine configurations in an OpenNeb-
ula13 cloud environment.

Modeling concepts of all these approaches are
reflected by our approach on a level of abstraction
that supports engineers in the design and deploy-
ment of cloud applications. As a result, model-
ing concepts required to, e. g., achieve the opti-
mization of an application deployment (cf. [Frey
and Hasselbring, 2011]), express elasticity rules
(cf. [Chapman et al., 2012]), or exploit work-
load models (cf. [Ferry et al., 2013,Hamdaqa and
Tahvildari, 2015]) are not completely captured
by our approach. However, it enables deploy-
ment models to be specified in such a way that
they are seamlessly applicable on UML models
usually created throughout application modeling
activities, e.g., class models to specify the re-
alization of components, because our approach
is based on UML. Consequently, well-connected
model-based views on cloud applications from
both perspectives environment-independent as
well as environment-specific are supported. The
refinement of the former is supported by UML
profiles in general [Bergmayr et al., 2014b] and
CAML’s cloud profile in particular. Cloud-specific
stereotypes allow extensional deployment models
to be refined towards a cloud environment with-
out re-modeling of the deployed artifacts as it is
the case for existing cloud modeling approaches.
This additional flexible typing dimension and the
benefits of a multi-viewpoint language exploited
by our approach differentiates it from existing ap-
proaches.

Cloud modeling support based on UML is pro-
posed by MULTICLAPP [Guillén et al., 2013]. It
presents a UML profile for the purpose of repre-
senting applications components that are expected
to be deployed on a cloud environment. As MUL-
TICLAPP does not support refining application
components towards cloud services provided by
a certain cloud environment, our approach is dif-

13OpenNebula: http://opennebula.org

ferent in the sense that CAML’s cloud profile
is applied to achieve exactly this environment-
specific refinement. Moreover, translating deploy-
ment models refined towards a cloud environment
into TOSCA brings management support to en-
gineers as TOSCA-compliant containers enable
automatic application provisioning based on ex-
tensional deployment models.

7 CONCLUSION

Our proposed Caml2Tosca approach bridges the
gap between UML and TOSCA. As a result, en-
gineers are capable to combine the capabilities of
both languages where the deployment viewpoint
is exploited for realizing the conceptual mapping
between them. Cloud-specific extensions to UML
called CAML are exploited to accomplish the
bridge towards TOSCA. To automate the trans-
lation from UML to TOSCA, we implemented
the Caml2Tosca transformer. It is grounded in
the presented conceptual mapping between the
two languages and provides the necessary glue to
leverage a full-fledged tool chain for architecture
modeling and application provisioning based on
UML and TOSCA. While the evaluation of our
approach shows its practical value, several lines of
future work need to be investigated. We aim to re-
alize a repository of common deployment types ap-
plicable to both UML and TOSCA. Bi-directional
transformations at the intensional level can play a
key role to synchronize those types between UML
and TOSCA and possibly other languages, such as
CloudML. Finally, providing simulation support
for deployment models to support prediction about
non-functional properties such as costs and perfor-
mance before the actual application provisioning
is carried out seems highly desirable. We plan to
explore how fUML [OMG, 2013] can be employed
to provide behavioral semantics for CAML in a
similar way as it can be used to define behavioral
semantics of MOF-based metamodels [Mayerhofer
et al., 2013].
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